快捷导航
登录 后使用快捷导航
没有帐号?注册

几何是中考数学经常会考到的题型之一,整理了2020中考数学几何知识点,中考数学几何有它就不怕了。快点收藏备用吧!

三角形知识点、概念总结

1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6. 高线、中线、角平分线的意义和做法

7. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

8. 三角形内角和定理:三角形三个内角的和等于180°

推论1 直角三角形的两个锐角互余

推论2 三角形的一个外角等于和它不相邻的两个内角和

推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

9. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

10. 三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1. 两组对边平行的四边形是平行四边形。

2. 性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3. 判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4. 对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1. 定义:有一个角是直角的平行四边形叫做矩形

2. 性质:矩形的四个角都是直角,矩形的对角线相等

3. 判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4. 对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1. 定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2. s菱=争6(n、6分别为对角线长)

3. 判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4. 对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2. 性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3. 判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4. 对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1. 定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形.一腰垂直于底的梯形是直角梯形

2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3. 等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4. 对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形

1. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2. 多边形的内角:多边形相邻两边组成的角叫做它的内角。

3. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5. 多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

6. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

7. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

8. 公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

9. 多边形外角和定理:

①n边形外角和等于n·180°-(n-2)·180°=360°

②边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

相关推荐
家长帮微信小程序
无需下载,随时看

反馈 顶部